Modified Equations for Stochastic Differential Equations

نویسنده

  • Tony Shardlow
چکیده

This paper considers the backward error analysis of stochastic differential equations (SDEs), a technique that has been of great success in interpreting numerical methods for ODEs. It is possible to fit an ODE (the so called modified equation) to a numerical method to very high order accuracy. Backward error analysis has been particularly valuable for Hamiltonian systems, where symplectic numerical methods can be approximated by a modified ODE arising from a perturbed Hamiltonian system, giving an approximate statistical mechanics for symplectic methods. See the monograph [3] for a review and further references. It is natural to ask whether such techniques extend to SDEs. I am unaware of any published work that has addressed this issue. We discuss modified equations for SDEs by perturbing the drift and diffusion functions by deterministic functions and looking for convergence in the weak sense of average with respect to smooth test functions. It is possible to determine a modified equation that approximates standard first order methods to second order accuracy for SDEs with additive noise. It is not possible to examine the case of SDEs with multiplicative noise, of convergence in the sense of mean square, nor is it possible to develop modified equations of higher order accuracy by working only with deterministic perturbations of the drift and diffusion coefficients. It remains to be seen whether a useful formulation of a modified equation can be introduced to describe numerical approximations of SDEs in greater generality. The paper is divided into three, each section presents the main ideas without developing any proofs. §2 develops the modified equation for a one dimensional SDE, showing that the noise should be additive and the difficulty of dealing with higher order approximations. Modified equations are derived for the forward and backward Euler methods. In §3, the extension to higher dimensions is discussed in relation to a Langevin equation. In §4, we give conclusions and suggest a way of studying backward errors in the pathwise sense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of DJ method to Ito stochastic differential equations

‎This paper develops iterative method described by [V‎. ‎Daftardar-Gejji‎, ‎H‎. ‎Jafari‎, ‎An iterative method for solving nonlinear functional equations‎, ‎J‎. ‎Math‎. ‎Anal‎. ‎Appl‎. ‎316 (2006) 753-763] to solve Ito stochastic differential equations‎. ‎The convergence of the method for Ito stochastic differential equations is assessed‎. ‎To verify efficiency of method‎, ‎some examples are ex...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Application of new basis functions for solving nonlinear stochastic differential equations

This paper presents an approach for solving a nonlinear stochastic differential equations (NSDEs) using a new basis functions (NBFs). These functions and their operational matrices are used for representing matrix form of the NBFs. With using this method in combination with the collocation method, the NSDEs are reduced a stochastic nonlinear system of equations and unknowns. Then, the error ana...

متن کامل

Study on efficiency of the Adomian decomposition method for stochastic differential equations

Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved.  Uniqueness and converg...

متن کامل

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

Stochastic differential equations and integrating factor

The aim of this paper is the analytical solutions the family of rst-order nonlinear stochastic differentialequations. We dene an integrating factor for the large class of special nonlinear stochasticdierential equations. With multiply both sides with the integrating factor, we introduce a deterministicdierential equation. The results showed the accuracy of the present work.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004